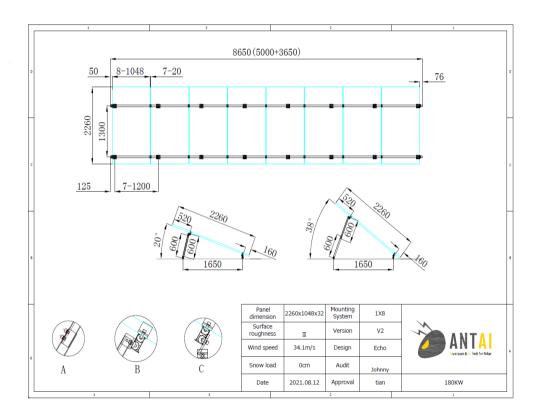


ANTAI TECHNOLOGY CO., LTD

Load Calculation

Contents


1	Design Conditions	 2
2	Drawing of Mounting System	 2
3	Structure Material	 3
4	Assumed Load	 4
5	Fixed Load	 4
6	Wind Load	 5
7	Snow Load	 9
8	Seismic Load for Design	 9
9	Allowable Stress	 10
10) Load Calculation of Main Parts	 12
	10.1 Rail Verification of Calculation	 12
	10.2 Rear Pile Calculation	 15
	10.3 Bolt Calculation	 16
	10.4 Calculation and	
m	easurement of clamp	 16

1 Design Conditions

a) Panel specification 2260 1048 32 Х mm 30 kq b) Panel weight Portrait c) Orientation d) Panel quantity 8 1 8 Х e) Tilt angleθ 38 f) Wind speed 34.1 m/s 0 g) Ground vertical snowfall cm Ш h) Ground surface roughness i) Maximum height 12 m j) Installation site Roof

k) Calculation Standard Japan JIS C 8955:2011

2 Drawing of Mounting System

3 Structure Material

a) Rail CG-019

Material: AL6005-T6; $\sigma s = 215 \text{ N/mm}^2$; $E = 69000 \text{ N/mm}^2$;

L= 8650 mm;

	Sectional geometry paramater(mm)					
	Α	281.197	IP	114044.6002		
8	Ix	79249.6739	Iy	34794.9263		
1.4	Wx (上)	2887.1075	Wy (左)	1988.4606		
r-216	Wx (下)	3514.3209	Wy (右)	2194.6446		
33. 31	ix	16.7878	iy	11.1238		

b) Rear Leg1 TYN-57

Material: AL6005-T6; $\sigma s = 215 \text{ N/mm}^2$; $E = 69000 \text{ N/mm}^2$;

L= 600 mm;

		Sectional geome	etry param	ater(mm)
	Α	332	IP	114959.7588
98	Ix	61667.3018	Iy	53292.457
	Wx (上)	3963.5261	Wy (左)	2960.6921
36	Wx (下)	3016.799	Wy (右)	2960.6921
-	ix	13.6288	iy	12.6696

c) Rear Leg2 TYN-58

Material : AL6005-T6 ; $\sigma s = 215 \text{ N/mm}^2$; $E = 69000 \text{ N/mm}^2$;

L= 600 mm;

			Sectional geome	etry param	nater(mm)
rc		Α	255.3562	IP	69135.3994
∴		Ix	33784.8711	Iy	35350.5283
က		Wx (上)	2094.7394	Wy (左)	2244.478
7	31.5	Wx (下)	2197.8812	Wy (右)	2244.478
ŀ	→ 01.0 →	ix	11.5024	iy	11.7659

4 Assumed Load

Load conditions and load combinations, see Table 1.
Table 1 – Load conditions & load combinations

Table 1 Edda confactoris & load combinations					
Load	Conditions	Classification			
Luau	Conditions	General region	Snowy region		
Long	Usual	G	G		
term	During snow	G	G+0.7S		
	During snow	G+S	G+S		
Short	During	G+W	G+W		
term	storm	G+W	G+0.35S+W		
term	During	G+K	G+0.35S+K		
	earthquak	G+K	G+0.335+K		

In addition, any of following conditions is also defined as Snowy Region.

- The area that vertical snow amount is more than 1 meter
 The area that the average snowy day of one year is more than 30 days (Count the days that the percentage of snow cover in the area is continuously more than half)

5 Fixed Load

J TINCA LOGA				_					
Module weight	G1=	30	X	8	x 9.8	=	23	52	N
Rail weight	G2=	2	Χ	0.762	X		8.65	x 9.8	
	=	1	.29	N					
Rear Leg1 weight	G3=	8	Х	0.900	Х		0.6	x9.8	
	=	4	42	N					
Rear Leg2 weight	G4=	8	Χ	0.692	Х		0.6	x9.8	
	=		33	N					
Fix load on Rail	G5=G1	1+G2	<u> </u>	2352	+		129		
	=	24	481	N					
Fix load on Beam	G6=G3	3+G4	l+G5	2481	+		42	+	33
	=	25	556	N					

6 Wind Load

6.1 Wind load for design

The wind load actting on the array could be calculated by equation (1).

$$Wp = Cw \times qp \times Aw \qquad \dots \qquad (1)$$

Cw: Wind power coefficient

qp : Velocity pressure for design (N•m⁻²)

Aw: Wind swept area (m²)

(The total area of all the modules that make up the array)

6.2 Velocity pressure for design

$$q_0 = 0.6 \times V_0^2 \times E \times I \qquad (2)$$

Here, q_n : Velocity pressure for design $(N \cdot m^{-2})$

 V_0 : Wind speed for design $(m \cdot s^{-1})$

E : Environmental coefficient

I : Applications coefficient

- **a) Wind speed for design** Wind speed for design is determined in the range of $30 \text{ m} \cdot \text{s}^{-1} \sim 46 \text{ m} \cdot \text{s}^{-1}$ based on damage situation of the past typhoon record and consideration of other wind in the local construction site.
- **b) Environmental coefficient** It is calculated by equation (3).

$$E = E_r^2 \times G_f \qquad \dots$$
 (3)

Here, E: Environmental coefficient

 E_r : Coefficient representing the distribution of the height direction of the average wind speed calculated by Formula (4) or (5)

G_f: Gust influence coefficient

(Ground surface roughness classification coefficient $\ \ \, \ \ \, \ \ \, \ \ \,$

(Ground Sarrac	c rouginicos c	idoonication coefficient	ш 2.17			
Table 2 – Gust influence coefficient						
Ground	The average	The average height above ground of the array H (m)				
surface	10 or less	More than 10 but less				
roughness	10 01 1655	than 40	More than 40			
classification	(1)	(3)				
I	2.0		1.8			
П	2.2	Numerical value	2.0			
Ш	2.5	between (1) and (3)	2.1			
IV	3.1		2.3			

If H is less than or equal to Z_b , E_r is calculated by Equation (4); if H is more than Z_b , it is calculated by Equation (5).

$$E_r = 1.7 \left[\frac{Z_b}{Z_G} \right]^{\alpha} \qquad (4)$$

$$E_r = 1.7 \left[\frac{H}{Z_G} \right]^{\alpha} \qquad \tag{5}$$

 Z_b , Z_G and α : numerical value listed in Table 3 is in accordance with the ground surface roughness classification

H: The average height above ground of the array (m)

	Table 3 $-$ Z _b , Z _G and α			
	Ground surface roughness classification	Z_b (m)	Z_{G} (m)	а
I	Areas outside city planning but prescribed in the Regulations by specific administrative agency where are very flat and there is no obstacle	5	250	0.10
п	Areas outside city palnning and whose ground surface roughness classification above I (Except the case that ground clearance of the array is less than 13m). Or areas in city planning zone and whose ground surface roughness classification below IV, and coastline or shoreline(Limited to those of distance to the opposite shore is more than 1500m. Following the same.) distance is under 500m(However, the occasions when ground clearance of array is under 13m or coastline/shoreline distance is more than 200m and ground clearance of array is under 31m are in exception.)	5	350	0.15
Ш	Areas that the ground surface roughness category is I, II or other than IV	5	450	0.20
IV	Areas in city planning zone and prescribed in the Regulations by specific administrative agency as an extremely significant urbanization area.	10	550	0.27
NOTE	Source : Ministry of Construction Notification No.	1454 (1	May 31,	2000)

Here, ground surface roughness coefficient depending c \Box :

$$Z_b = 5$$
 , $Z_G = 450$, $a = 0.2$ Therefore H= 12 > $Z_b = 5$;

$$Er=1.7[\frac{H}{Z_G}]^{\alpha} = 0.823$$

$$E = E_r^2 \times G_f = 1.677$$

application coefficient

c) Applications coefficient I see Table 4.

Table 4 - Applications coefficient

Table 4 Applications coefficient				
Use of solar power generation system	Applications coefficient			
Extremely important solar power system	1.32			
Normal solar power system	1.0			
NOTE The design wind speed for normal solar power system need to be reset every 50 years, which is equivalent to 1.0 of the				

Here applications coefficient of normal solar power system is

6.3 Wind power coefficient Cw

6.3.1 Wind power coefficient of the module surface

Wind power coefficient of the module surface is determined by wind tunnel experiment. However, in the case of installation form shown in Table 5, numerical values shown in note or the table that calculated by approximate expression (6) to (13) may be used.

expression (b) to (15) may be used.	
For ground installation(single-handed) of downwind(positive	
pressure), according to equation (6)	>
Cw=0.65+0.0090	(6)
But, $15^{\circ} \le \theta \le 45^{\circ}$	
For ground installation(single-handed) of headwind(negative	
pressure), according to equation (7)	(-)
Cw=0.71+0.0160	(7)
But, 15°≤0≤45°	
For roof installation of downwind(positive pressure), according to	
equation (8)	(0)
Cw=0.95-0.017θ But, 12°≦θ≦27°	(8)
For roof installation of headwind(negative pressure), according to	
equation (9)	
$Cw = -0.1 + 0.077\theta - 0.0026\theta^2$	(0)
	(9)
But, $12^{\circ} \le \theta \le 27^{\circ}$ For concrete flat roof installation of downwind(positive pressure),	
according to equation (10) or (11)	
0 0 70 5	(10)
CW=0.785 But. 0°≦θ<15°	(10)
$Cw = 0.65 + 0.009\theta$	(11)
But, 15°≦θ≦45°	(11)
For concrete flat roof installation of headwind(gegative	
pressure), according to equation (12) or (13)	
Cw=0.95	(12)
But, 0°≦θ<15°	()
Cw=0.71+0.016θ	(13)
But, 15°≤θ≤45°	
Here, θ : tilt angle of array surface (°)	
θ = 38 > 15	
Downwind situation $Cw=0.65+0.009 \times 38 = 0.992$	
Headwind situation $Cw = 0.71 + 0.016 \times 38 = 1.318$	

Table 5 – Wind power coefficient of solar module surface

Setting Form	Wind power coefficient($C_{ m w}$)		Diagram
Setting Form	Downwind(positive pressure)	Headwind(negative pressure)	Diagram
Ground mount (single-handed)		Wind area	For duplex installation, peripheral edge part takes a value of approximate formula and 1/2 of approximate formula value for central part.
Pitch roof			When roof tiles etc. raised more than 10cm, it takes 1/2 load value of approximate formula. Besides, scope should begin from the inside edge of the wall, excluding the eaves and gables.
Flat roof			When installed at the edge of roof, it is outside of application scope. The roof edge refers to the edge length of 10% of the area. But if the side length of 10% is over 3m, then takes 3m.
Note. >> win	d direction — direction of the wind pressure		

6.4 Wind swept area Aw (m²)

$$Aw = 2.26 \times 1.048 \times 1 \times 8 = 18.95$$

Assumed wind load on modules(downwind)

$$W_P = C_W \times 0.6 \times V_0^2 \times E \times I \times A_W$$

= 0.99 x0.6 x 34 ^2 x 1.677 x 1.0 x 18.95
= 21994 N

$$W_P = C_W \times 0.6 \times V_0^2 \times E \times I \times A_W$$

Horizontal wind pressure

Downwind
$$W_{P1}=W_P \times \sin\theta = 21994 \times \sin 38$$
 ° = 13541 N Headwind $W_{P1}'=W_P' \times \sin\theta = 29222 \times \sin 38$ ° = 17991 N

Vertical wind pressure

Downwind
$$W_{P2}=W_P \times cos\theta=$$
 21994 x cos 38 ° = 17331 N
Headwind $W_{P2}'=W_P' \times cos\theta=$ 29222 x cos 38 ° = 23027 N

7 Snow Load

Snow load for design is calculated by the equation (23).

$$S_P = C_S \times P \times Z_S \times A_S \qquad (23)$$

Here, Sp: Snow load (N)

Cs : Slope coefficient

P: The average unit load of snow (Snow 1cm per N·m⁻²)

Zs : Ground vertical snowfall (m)

As: Snow cover(Horizontal projected area of array surface n

38

a) Slope coefficient the slope coefficient Cs of equation(23)is calculated by equation(24). However, if β is more than 60 degrees, C_s can be set to 0.

= $\sqrt{\cos(1.5 \times 38)}$ = 0.7 Here, β : The slope of the snow surface (degrees) is

- **b) The average unit load of snow** The average unit load of snow (P)(Snow 1cr per $N \cdot m^{-2}$) in the equation(23) is above $20 \, \mathrm{N}$ for general region, and above $30 \, \mathrm{N}$ for snowy region.
- **c) Snow accumulation** The snowfall for design of the plane of the array is the amount of vertical snow (Zs) on the ground, and the amount of snow that is calculated by equation(25) takes into account the impact of local terrain factors in the area. However, if it is possible to determine the 50-year reproduction expected value based on the ground snow depth of observational data from the weather station of the zone or area in the vicinity thereof and by the way of statistical processing, it can be used.

$$Zs = \alpha \times ls + \beta \times rs + \gamma$$
 (25)

Here, Is: Standard altitude (m) of the area

rs: Standard Umiritsu(sea rate) of the area

a, β and γ : Coefficients determined according to area

Snowfall in the present design , regardless of the above formula , based on the numerical value established by the Governor.

$$Zs = 0 cm$$

 $SP = Cs \times P \times Zs \times As = Cs \times P \times Zs \times Aw \times \cos\theta$

$$= 1.000 \times 20 \times 0 \times 18.95 \times \cos 38^{\circ}$$

 $= 0 \times N$

8 Seismic Load for Design

Regarding of the seismic load for design, it is calculated by equation(26) for general region, and by equation(27) for snowy region.

$$K_p = k_p \times G \tag{26}$$

$$K_p = k_p \times (G + 0.35S)$$
(27)

Here, Kp: Seismic load for design (N)

kp : Horizontal seismic intensity for design

G: Fix load (N) S: Snow load (N) a) Horizontal seismic intensity for design For the scheme to be tightened to building, both of the structure part and foundation part of horizntal seismic intensity are calculated by equatin(28). Besides, to prevent the harm caused by falling or movement of array, it is an effective way to put the weight basis on the building. For the structure part, calculate by equation(28), and for the foundation part, calculate by equation(29). However, it does not apply to the solar system using the application coefficient of 1.5.

$$k_p \ge 1.0 \times Z \times I$$
 (28)

$$k_p \ge 0.5 \times Z \times I \tag{29}$$

Here, Z: Earthquake area coefficient (1.0-0.7)

I : Applications coefficient

$$kp = 1.0 x 1.0 x 1.0 = 1.0$$

b) Applications coefficient See Table 6.

Table 6 - Applications coefficient

Use of solar power generation system	Applications coefficient
Extremely important solar power	1.5
Normal solar power system	1.0

Summary $K_P = kp$ G

$$= 1.0 x 2556$$

 $= 2556 N$

9 Allowable Stress

For the allowable stress, it shall be as follows.

- a) Steel for construction The allowable stress of steel for construction in long term load is as follow. In the case of short term load, it is 1.5 times of long term load.
 - 1) Allowable tensile stress

$$\sigma_{_{y}}/1.5$$
 ······(21)

But, below
$$0.7\sigma_{\rm B}/1.5$$

2) Allowable compressive stress

3) Allowable bending stress

4) Allowable shear stress

$$\sigma_{\nu}/(1.5\times\sqrt{3})$$
(24)

But, below $0.7\sigma_{\rm B}/(1.5\times\sqrt{3})$

5) Allowable bearing stress
$1.1\sigma_y$ (25)
Here, σ_{v} : Yield point stress of material (N·mm ⁻²)
$\sigma_{\rm B}$: Tensile stress of material $({ m N}\cdot{ m mm}^{-2})$
b) Aluminum for construction The allowable stress of aluminum for construction in long term load is as follow. In the case of short term load, it is 1.5 times of long term load.
1) Allowable tensile stress
$\sigma_{0.2}/1.5$ (26)
But, below $(5\sigma_{\rm B}/6)\times(1/1.5)$
2) Allowable shear stress
$\sigma_{0,2}/(1.5 \times \sqrt{3})$ (27)
But, below $(5\sigma_{\rm B}/6)\times[1/(1.5\times\sqrt{3})]$
3) Allowable compressive stress
$\sigma_{0.2}/1.5$ (28)
But, below $(5\sigma_{\rm B}/6)\times(1/1.5)$
4) Allowable bending stress
$\sigma_{0.2}/1.5$ (29)
But, below $(5\sigma_{\rm B}/6)\times(1/1.5)$
5) Allowable bearing stress
5.1) Pin and the contact area
$\sigma_{0.2}/1.1$ (30)
But, below $(5\sigma_B/6)\times(1/1.1)$
5.2) Sliding or rolling support part
$1.9\sigma_{0.2}$
Here, $\sigma_{_{0.2}}:$ Minimum stamina $(ext{N}\cdot ext{mm}^{-2})$

10 Load Calculation of Main Parts

10.1 Rail Verification of Calculation

10.1.1 Short term

The total load in the case of downwind :

G5+Wp	=	2481	+	21994	=	24475	N
G5+S	=	2481	+	0	=	2481	N

The total load in the case of headwind :

$$G5-Wp' = 2481 - 29222 = -26740 N$$

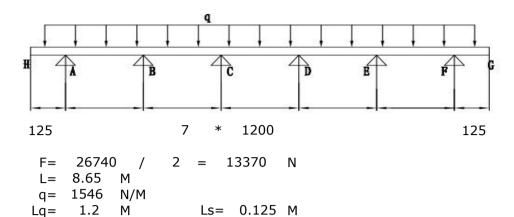
The Value K is from below sheet :

Rails with 2 spans

The bending coefficie nt of fulcrum	Κσ	0.125
The deflectio n coefficie nt in the spans	Κδ	0.521

Rails with 4 spans

		•
The bending coefficie nt of fulcrum	Κσ	0.107
The deflectio n coefficie nt in the spans	Κδ	0.632


Rails with 3 spans

The bending coefficien t of fulcrum	Κσ	0.1		
The deflection coefficien t in the spans	Κδ	0.677		

lails with 5 (or more) span

tano viteri o (or more) opari			
The bending coefficien t of fulcrum	Κσ	0.105	
The deflection coefficien t in the spans	Κδ	0.644	

so it should calculate the structure load in the case of storm.

Calculation within the span

Stress

 $\sigma max = K\sigma * q * Lq^2/Zx$

$$= 0.105 \times 1546 \times 1.20 ^2 / 2.89$$

 $= 80.9 \text{ N/mm}^2$

Material to be used is AL6005-T6, allowable stress is 215 N/mm 2 . 80.9 /215<1, is within the safe range

Deflection δ

 δ max=K δ *q*Lq^4/(100*E*Ix)

$$= 0.64 \times 1546 \times 1.2 ^4/(100 \times 6.9 \times 7.925)$$

= 0.377 cm

= 3.77 mm

Strut and the pitch of strut 1200 mm,

The maximum amount of displacement 3.77 mm (3.77 / 1200) < (1/100), is within the safe range

10.1.2 Long term

```
\mathsf{G} \quad = \quad 2481 \qquad \quad \mathsf{N}
  F = 2481 / 2 = 1241
                                        Ν
  L = 8.65 M
  q = 143
              N/M
                        Ls= 0.125 M
 Lq= 1.2 M
Calculation within the span
Stress
\sigmamax=q*Lq^2*K\sigma/Zx
   = 143 x 1.20 ^2 0.105 / 2.89
   = 7.5
              N/mm^2
Material to be used is AL6005-T6, allowable stress is (215/1.5=143) N/mm<sup>2</sup>.
       7.5 / 143 < 1, within the safe range
Deflection \delta
\deltamax=K\delta*q*Lq^4/(100*E*Ix)
   = 0.64 \times 143 \times 1.2 ^4/(100 \times 6.9 \times 7.925)
   = 0.035 cm
   = 0.35 \, \text{mm}
Strut and the pitch of strut 1200 mm,
     The maximum amount of displacement 0.35 mm
```

(0.35 / 1200) < (1/100), is within the safe range

10.2 Rear Pile Calculation

The load acting on each pile are equal if front pile and rear pile are in the same cross-sectional shape. Thus, only rear pile is calculated, for the long extention of Rear Pile becomes a disadvantage against buckling.

The total load in the case of downwind :

$$G6+Wp = 2556 + 21994 = 24550 N$$

 $G6+S = 2556 + 0 = 2556 N$

The total load in the case of headwind :

$$G6-Wp' = 2556$$
 - $29222 = -26665$ N

so it should calculate the structure load in the case of storm.

The total load on piles:

The total load in the case of downwind :

G6+Wp = 24550 N

The total load in the case of headwind :

G6-Wp' = -26665

From the above, the buckling study is in the conditin of storm with max load, for the pull-out study, it is to examine structurally at the time of headwind.

10.2.1 Buckling study

For the long-term allowable compressive stress level, it can be calculated from the slenderness ratio λ and seek complience with the steel structure design criteria.

$$\lambda \leq \Lambda, fc = (1-0.4(\lambda/\Lambda)^2)F/U$$

 $\lambda > \Lambda, fc = 0.277F/(\lambda/\Lambda)^2$

Here, fc: Allowable compressive stress level (N/mm²)

$$λ$$
: Slenderness ratio =L/k= 960 / 11.50 = 83.5 $Λ$: Limit slenderness ratio = $\sqrt{(π^2 E/0.6F)}$

Λ: Limit sienderness ratio =
$$\sqrt{(\pi^2 L/0.6F)}$$

= $\sqrt{(\pi^2 x)}$ 69000 / 0.6 / 215) = 72.7

E: Young modulus =
$$69000 \text{ N/mm}^2$$

$$F: F-measure = 215 N/mm^2$$

$$U:3/2+2/3x(\lambda/\Lambda)^2=3/2+2/3x($$
83.5 / 72.7)^2 = 2.38

L: Buckling length =
$$0.8*I = 0.8 \times 1200 = 960$$
 mm

*Conditions with respect to the displacement is restraint, conditions with respect to the rotation is one end free and the other end restraint, the recommended value is 0.8.

K : Cross-section secondary radius =
$$\sqrt{(i/A)}$$

$$=\sqrt{(33785 / 255.36)} = 11.50 \text{ mm}$$

I : Length of the strut =
$$1200$$
 mm

i : Second moment of cross-section =
$$33785 \text{ mm}^4$$

A : Cross-sectional area of the strut =
$$255.36 \, \text{mm}^2$$

$$\lambda > \Lambda$$

fc=0.277F/(λ/Λ)^2 = 45 N/mm²

Short-term allowable stress is 1.5 times of the long-term allowable stress.

$$45 \times 1.5 = 68 \text{ N/mm}^2$$

Compressive stress to the rear pile

F/A= 24550 / 8 / 255.36 = 12.0 N/mm²

$$<$$
 68 N/mm² \rightarrow OK

10.2.2 Tensile stress study

$$P = |G6-Wp'| / 8 = 26665 / 8 = 3333 N$$

$$\sigma$$
= P/A = 3333 / 255.36 = 13.1 N/mm² < 215 N/mm² \rightarrow OK

From the above, Pile is satisfied with the allowable value of buckling and tensile stress.

10.3 Bolt Calculation

F=
$$|G6-Wp'|$$
 / 16 = 26665 / 16 = 1667 N
A= 36.6 mm²

$$A = 36.6 \text{ mm}^2$$

$$T = F/A = 1667 / 37 = 46 N/mm^2$$

A2-70 bolt shear stress values (700x0.7=490) N/mm² 46 / 490 < 1, is within the safe range

10.4 Calculation and measurement of clamp

The total load in the case of headwind:

$$| G6-Wp' | = 26665$$
 N

$$F = |G6-Wp'| / n = 26665 / 16 = 1667 N$$