



# PRESENTACIÓN DEL INVERSOR HUAWEI

# SUN2000-330KTL-H1



# FusionSolar 8.0: Higher Yields, Smart O&M, Safe & Reliable and Grid Forming





# Summary

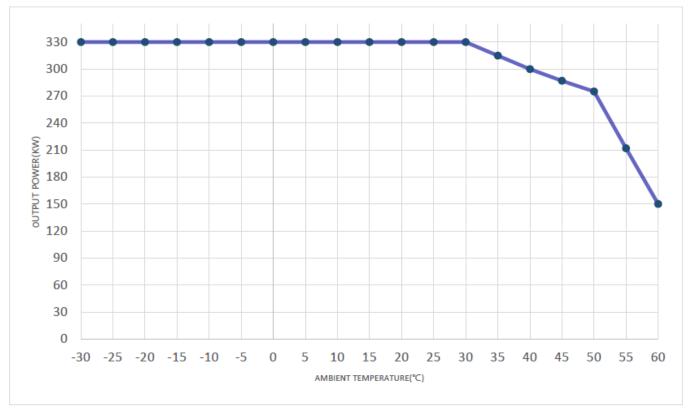
| SUN2000-330KTL-H1                   |                  |  |  |  |  |
|-------------------------------------|------------------|--|--|--|--|
| Efficiency                          |                  |  |  |  |  |
| Max. Efficiency                     | 99.00%           |  |  |  |  |
| European Efficiency                 | 98.80%           |  |  |  |  |
| Inj                                 | out              |  |  |  |  |
| Max. Input Voltage                  | 1,500 V          |  |  |  |  |
| Number of Inputs                    | 28               |  |  |  |  |
| Number of MPP Trackers              | 6                |  |  |  |  |
| Max. Current per MPPT               | 65A              |  |  |  |  |
| Max. PV Inputs per MPPT             | 4/5/5/4/5/5      |  |  |  |  |
| Max. Short Circuit Current per MPPT | 115A             |  |  |  |  |
| Start Voltage                       | 550 V            |  |  |  |  |
| MPPT Operating Voltage Range        | 500 V ~ 1,500 V  |  |  |  |  |
| Nominal Input Voltage               | 1,080 V          |  |  |  |  |
| Out                                 | put              |  |  |  |  |
| Nominal AC Active Power             | 300,000 W @40°C  |  |  |  |  |
| Max. AC Apparent Power              | 330,000 VA @30°C |  |  |  |  |
| Max. AC Active Power (cosφ=1)       | 330,000 W @30°C  |  |  |  |  |
| Nominal Output Voltage              | 800 V, 3W + PE   |  |  |  |  |
| Rated AC Grid Frequency             | 50 Hz / 60 Hz    |  |  |  |  |
| Nominal Output Current              | 216.6 A @40°C    |  |  |  |  |
| Max. Output Current                 | 238.2 A          |  |  |  |  |
| Adjustable Power Factor Range       | 0.8 LG 0.8 LD    |  |  |  |  |
| Max. Total Harmonic Distortion      | < 1%             |  |  |  |  |

| Prote                                        | ection                                |
|----------------------------------------------|---------------------------------------|
| Smart String-Level Disconnector (SSLD)       | Yes                                   |
| Anti-islanding Protection                    | Yes                                   |
| AC Overcurrent Protection                    | Yes                                   |
| DC Reverse-polarity Protection               | Yes                                   |
| PV-array String Fault Monitoring             | Yes                                   |
| DC Surge Arrester                            | Type II                               |
| AC Surge Arrester                            | Type II                               |
| DC Insulation Resistance Detection           | Yes                                   |
| AC Grounding Fault Protection                | Yes                                   |
| Residual Current Monitoring Unit             | Yes                                   |
| Commu                                        | nication                              |
| Display                                      | LED Indicators, WLAN + APP            |
| USB                                          | Yes                                   |
| MBUS                                         | Yes                                   |
| RS485                                        | Yes                                   |
| Gen                                          | eral                                  |
| Dimensions (W x H x D)                       | 1,048 x 750 x 395 mm                  |
| Weight (with mounting plate)                 | 112 kg                                |
| Operating Temperature Range                  | -25°C ~ 60°C                          |
| Cooling Method                               | Smart Air Cooling                     |
| Max. Operating Altitude without Derating     | 4,000 m                               |
| Relative Humidity                            | 0 ~ 100%                              |
| DC Connector                                 | Staubli MC4 EVO2                      |
| AC Connector                                 | Waterproof Connector + OT/DT Terminal |
| Protection Degree                            | IP66                                  |
| Topology                                     | Transformerless                       |
| Self power consumption at night (sleep mode) | 4.8 W                                 |



# Views





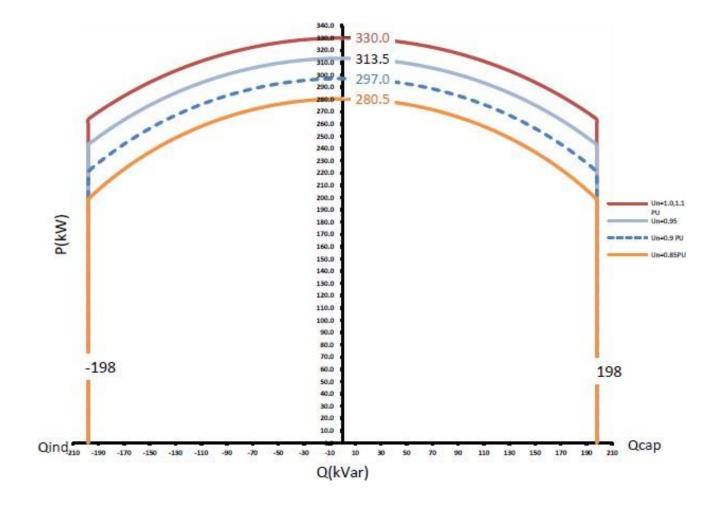







# **Temperature Derating Curve**




#### Grid Voltage:800Vac,PF=1

| Model    | -30°C  | -25°C  | -20°C  | -15°C  | -10°C  | -5°C   | 0°C    | 5°C    | 10°C   | 15°C   |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| SUN2000- | 330 kW |
| 330KTL-  | 20°C   | 25°C   | 30°C   | 35°C   | 40°C   | 45°C   | 50°C   | 55°C   | 60°C   |        |
| H1       | 330 kW | 330 kW | 330 kW | 315 kW | 300 kW | 287 kW | 275 kW | 212 kW | 150 kW |        |

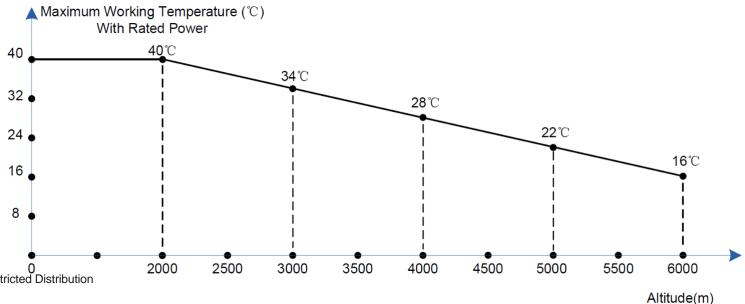


## PQ Curve

- ✓ Maximum reactive power range is -198kVar
   +198kVar.
- ✓ When SUN2000-330KTL-H1 operates at grid voltage 1.0/1.1 p.u., the output power can reach 330kW (when PF=1) or 330kVA.
- ✓ When SUN2000-330KTL-H1 operates at grid voltage 0.9 p.u., the output power can reach 297.05kW (when PF=1) or 297.05kVA.
- ✓ When SUN2000-330KTL-H1 operates at grid voltage 0.85 p.u., the output power can reach 280.50kW (when PF=1) or 250.50kVA.



#### Max. Output Current = 238.2A


$$P(0.90 \ p.u.) = \sqrt{3} \ x \ 0.90 \ x \ 800 \ x \ 238.2 \ A = 297.05 \ kW$$

$$P(0.85 p.u.) = \sqrt{3} \times 0.85 \times 800 \times 238.2 = 280.50 \text{kW}$$



# **Altitude Derating**

- The maximum working temperature is the ambient temperature below which SUN2000 can output rated power without derating.
- When the altitude rises, the cooling capacity of the inverters derates. So the internal temperature of inverters in the high altitude area will be higher and severer than that in the low altitude area.
- When altitude > 2000m, the maximum working temperature of SUN2000 should derate by altitude, and it derates in accordance with 6 °C/1000m.





## Certificates

✓ IEC 61000 EMC.

✓ IEC 62109 Safety.

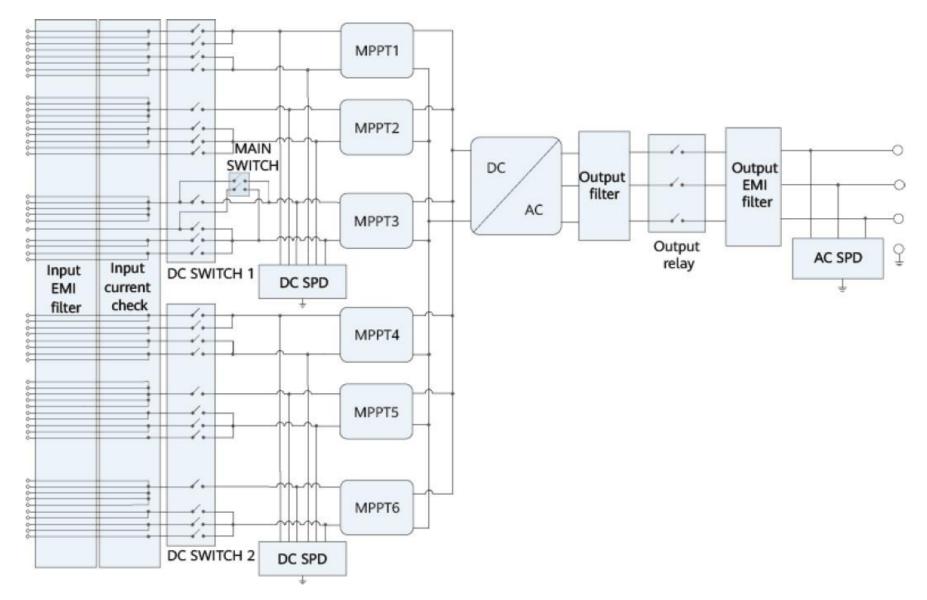
✓ IEC 62116 Anti-island.

✓ IEC 61727 Utility PV systems.

✓ IEC 50530 Overall efficiency of grid connected photovoltaics inverters.

✓ IEC 60529 IP protection.

✓ IEC 60068 Environmental Testing.

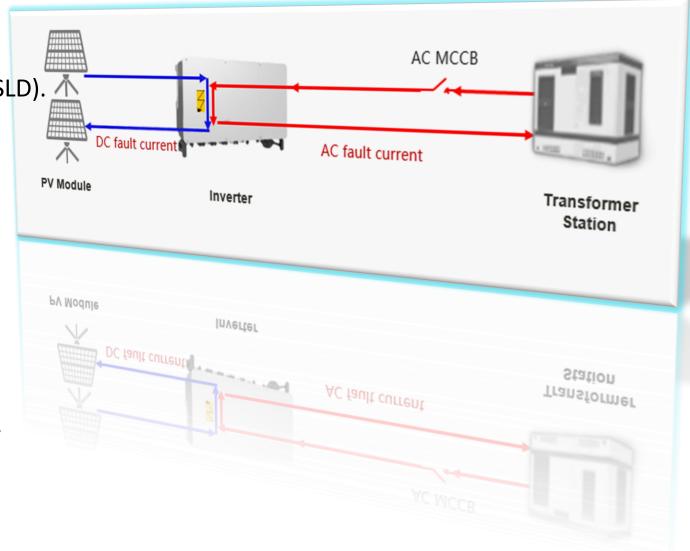

✓ IEC 61683 Procedure for measuring efficiency.







# SLD



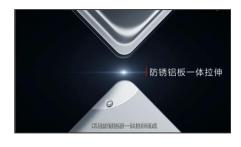



## **Protections**

✓ Smart String-Level Disconnector (SSLD).

- ✓ Anti-islanding.
- ✓ AC overcurrent.
- ✓ DC reverse-polarity.
- ✓ PV string fault detection.
- ✓ DC surge arrester.
- ✓ AC surge arrester.
- DC Insulation Resistance Detection.
- ✓ AC Grounding Fault Protection.
- ✓ Residue Current Monitoring Unit.






# IP66 & separate chamber design: improvement of product reliability

# Structure Optimization



SUN2000 IP66 Test Report





SUN2000-330KTL-H1/H2

#### **IP66 Protection Grade**

Separate chambers design, free from foreign objects

- ✓ One-piece stretching aluminum panels to reduce splicing gaps
- ✓ High weather resistant coating material

# Harsh Environment Test



Industry 's first open-ended Wind-blown & rain test chamber

Test chamber with builtin super fan and water spray device. Simulates 12 Typhoon or other Severe Weather



Salt spray test chamber

Salt spray test chamber, produces 5% salinity, 30\*24h uninterrupted test.
Simulates coastal high salt spray scenario



# SSCF-TECH: Active dust removal in harsh application scenarios

## High Reliability Design



**IP68 Protection** 

Aluminum Frame Design

Stainless Steel Bearings

High Temperature Resistant Grease

Smart Speed Control

00000000

Design life time

200,000h @ 40°C

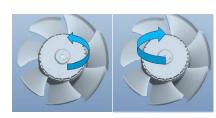
135,000h @ **50°**℃

Annual failure rate

40°C operation time

+ <0.5%

>31y


# SSCF-TECH (Smart Self-Clean Fan)

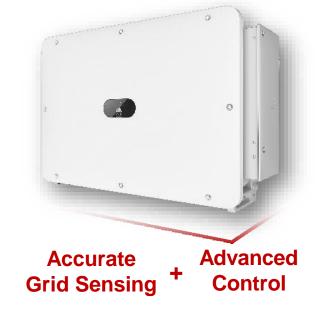


Ventilation Panel blocked by dust

In harsh scenarios such as sandy wind and willow, the fan ventilation panel is easily blocked, the whole machine dissipates heat poorly and the inverter runs at reduced capacity

#### SSCF-TECH




Forward Turn Reverse Turn

The inverter automatically reverses the dust according to the temperature, light and other conditions without affecting the power generation to avoid the air ducts being blocked



## **Smart Grid-connection**

# Robust Operation under All Grid Scenario

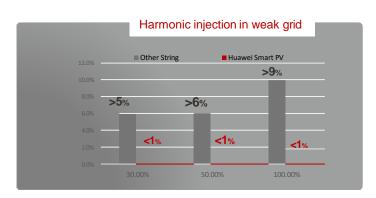


## **Supporting Stable Operation In All Grid Scenarios**

Full power operation (SCR 1.1~3)

Operation Stability in weak grid

Smart PV Controller maintains stable operation,
Other inverter shuts down for protection due to oscillation


POC AC voltage

Output current of other string inverter

SUN2000-175KT output current

# Digital Simulation Grid code simulation modeling Power system simulation Report Calibrated Report

Active THD suppression THDi<1%



# Semi-physical Simulation 'Hardware in the Loop'

DSP control circuits

# Real Testing Grid simulation test in the lab, Onsite testing





# TÜV certification, availability> 99.999%





TUN MORE

THE WORK PROPERTY OF THE WORK PROPERTY OF

Qinghai 2.2GW ultra-high voltage project

**TUV Report** 





Fuse Free



| NO. of Inverter | COD       | Altitude | Total Available Time | Availability |
|-----------------|-----------|----------|----------------------|--------------|
| 9216 pcs        | Sep. 2020 | 3100m    | 20,000,000 hours+    | 99.9990%     |



# Smart I-V Curve Diagnosis 4.0: Online and Full Detection, Reducing O&M Costs

#### Authentication: L4 - highest level in the industry

|            |                      | I-V Curve Scar             | Abno     | Fault<br>Diagnosis |                      |                      |                                            |  |
|------------|----------------------|----------------------------|----------|--------------------|----------------------|----------------------|--------------------------------------------|--|
|            | Performance<br>Level |                            | Scanning | Recogniti          | on Rate <sup>1</sup> | -                    | Root                                       |  |
| E. Carrier | Level                | Measurement Precision Rate |          | Class I<br>defect  | Class II<br>defect   | Recurren<br>ce Rate² | Cause<br>Analysis<br>Accuracy <sup>3</sup> |  |
| 1          | Q LI de              | Voltage and current ≤ 1.0% | ≥ 70%    | ≥ 75%              | ≥ 70%                | ≥ 70%                | ≥ 70%                                      |  |
|            | L2 MIRTHE            | Voltage and current ≤ 1.0% | ≥ 80%    | ≥ 85%              | ≥ 80%                | ≥ 80%                | ≥ 80%                                      |  |
|            | L3                   | Voltage and current ≤ 0.5% | ≥ 85%    | ≥ 90%              | ≥ 85%                | ≥ 85%                | ≥ 85%                                      |  |
| *          | L4                   | Voltage and current ≤ 0.5% | ≥ 95%    | ≥ 95%              | ≥ 90%                | ≥ 90%                | ≥ 90%                                      |  |
|            | Actual test result   | ≤ 0.5%                     | 97.5%    | 100%               | 96.4%                | 96.2%                | 96.8%                                      |  |

# Widely used in plants around the world (> 15 GW) to improve plant O&M efficiency

Project: XX rooftop PV plant in Ningbo, Zhejiang

PV module heat spot effect

PV module diode short

62

Faulty strings

e diode short ircuit

Shading from trees

Front/Rear row shading

Project: XX PV plant in a coal mining subsidence area of Yangguan, Shanxi

**3960**Diagnosed strings

188

4.7%

String failure rate

I-V curve scanning of other vendors

Faulty strings St

String failure rate

#### **Huawei Smart I-V Curve Diagnosis**

#### Multi-scenario adaptability Energy yield loss assessment

- Applicable to large-scale ground-mounted and mountainous scenarios
- Compatible with mainstream modules: halfcell/shingled/166/182/210 mm

#### Limited adaptability

- PV string-based diagnosis
- Hard to apply in various scenarios

- Quantifying the energy yield loss of faulty strings
- Precise guidance for PV plant O&M

## No energy yield loss assessment

Not supported

#### Scheduled scanning

528

Diagnosed strings

**VS** 

 Periodic diagnosis and email notification ensuring user experience

#### No scheduled scanning

Not supported

### ISV integration

- Supporting northbound interfaces
- Can be integrated by ISV

#### No ISV integration

Not supported

#### Refined data management

- The inverter automatically obtains irradiance data.
- Parameters of PV strings can be configured.

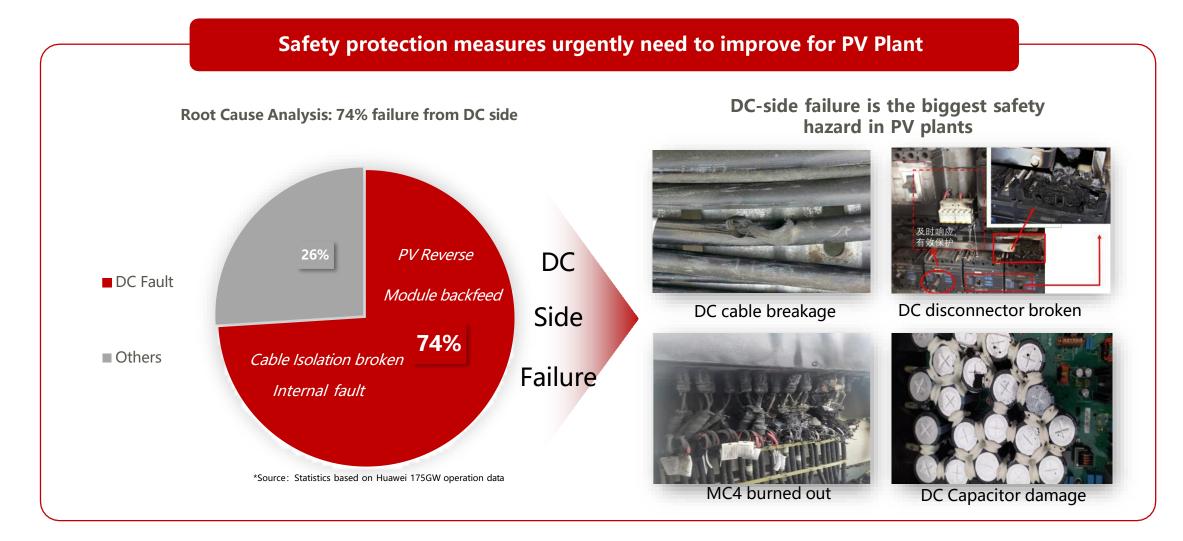
## Obtaining unrefined data from the EMIs

- · Obtaining data from the EMIs
- Parameters can be configured only for inverters.

# High availability of diagnostic reports

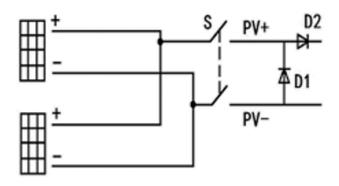
- Provide diagnosis overview report, diagnosis report, and fault O&M report.
- Provide raw data for the customer.

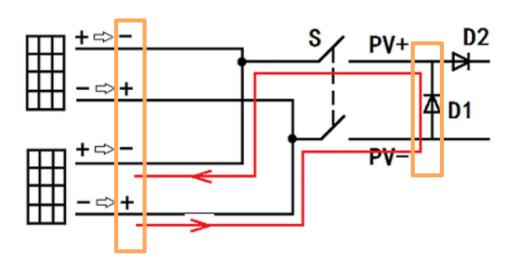
## Poor availability of diagnostic reports


- No fault cause analysis and low availability
- · Raw data cannot be exported.






# Smart String-Level Disconnector (SSLD)


# DC-side failure is the biggest threat for PV Plant safety





# Typical DC faults





#### Polarity of DC side is correct.

Positive terminal of PV string is connected to the positive terminal of SUN2000 input terminal.

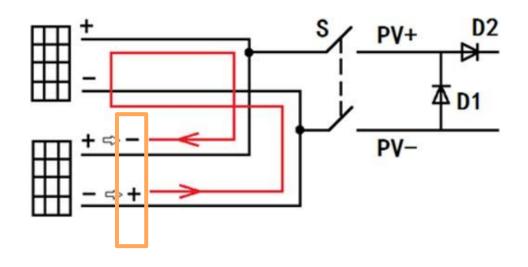
Negative terminal of PV string is connected to the negative terminal of SUN2000 input terminal.

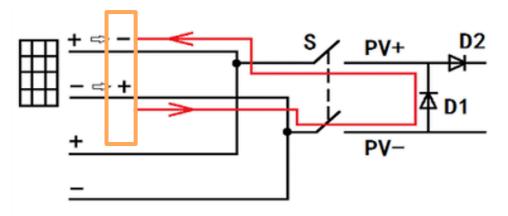
Positive and negative terminals of 2 strings are connected in parallel before the DC switch.

D1 is the anti-parallel diode of the boost circuit.

D2 is the isolation diode between MPPTs, that is, the isolation diode between PV strings and the bus.

#### Two PV strings connected to the same MPPT are reverse.


After the DC switch is turned on, each PV string forms a short-circuit loop with the IGBT inverted diode of the BOOST circuit through the DC switch, as shown by the red solid line in the figure.


If the DC switch is turned off, as a result, the DC switch is arced and damaged, and the MPPT cannot work properly.

In this scenario, if the DC terminal is directly removed and inserted, arcing occurs.



# Typical DC faults





#### Two PV strings are connected to the same MPPT.

One is correct and the other is reverse.

The two PV strings are short-circuited without passing through the DC switch, as shown by the red solid line in the figure.

In this case, the input voltage is 0, the PV string current is the short-circuit current of the PV module, it has no damage to the inverter and damage to the PV module.

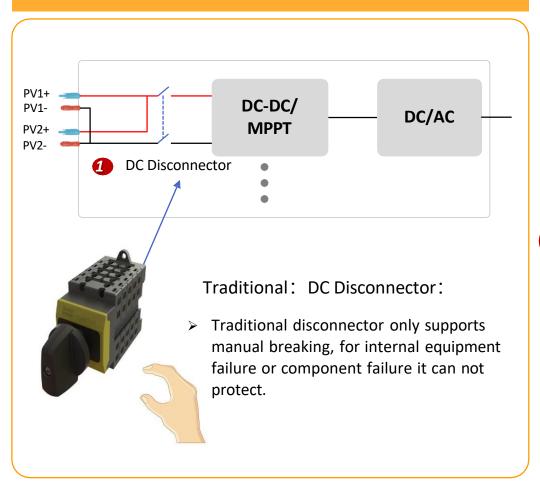
In this scenario, because the two strings are directly short-circuited. If the DC terminals are directly removed and inserted, it will cause arcing and cause electric shock. However, operating the DC switch has no effect.

#### One MPPT circuit is connected to only one string in the reverse direction.

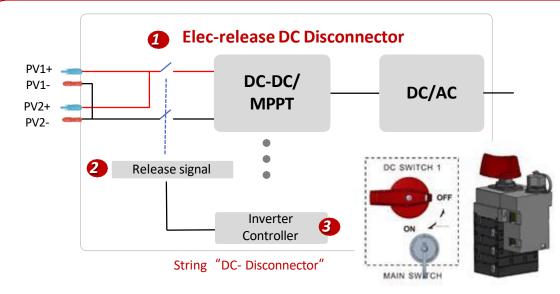
After the DC switch is turned on, the string and the IGBT diode of the BOOST circuit form a short-circuit loop through the DC switch, as shown by the red solid line in the figure.

In this case, if the DC switch is turned off, the DC switch is arced and damaged, and the MPPT cannot work properly.

In this scenario, if the DC terminal is directly removed and inserted, arcing will occur.



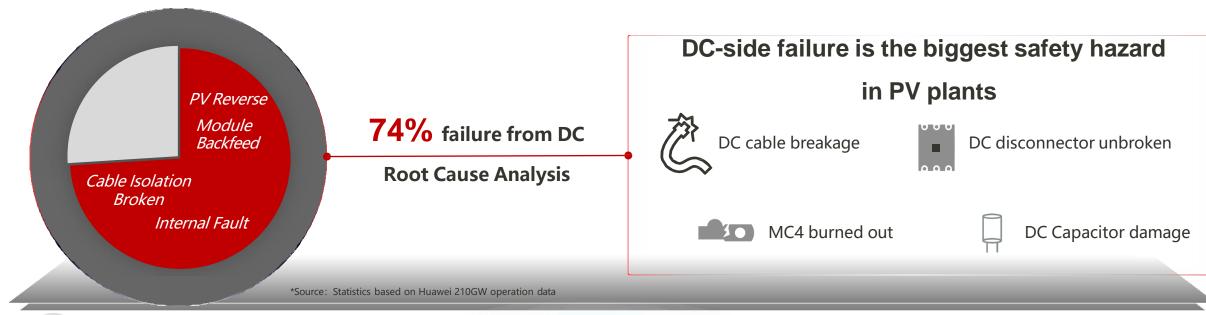

# Smart String-Level Disconnector (SSLD)


Integrate DC breaker into inverter to realize fast breaking and improve system safety

VS

#### **Traditional: DC Disconnector**




#### **SSLD: String level fast breaking**



- > Real-time detect current, bus voltage, when internal short circuit occur, inverter quickly cut off the fault current.
- > Compared with the traditional disconnector, Disconnector has the function of detection and breaking.
- > Compared with fuse protection: fuse free.
- > Meet the requirements of IEC 62548 and IEC60947-2.



# SSLD-TECH: Precise fault detection, rapidly disconnect DC system faults





## **SSLD-TECH**

All-scenario, high-precision, and fast response



String fault connection **Disconnect time≤250ms** 



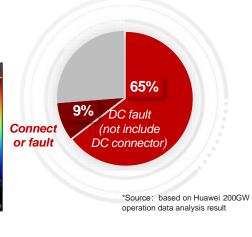
DC input current reverse-flow **Disconnect time ≤250ms** 



Inverter internal short circuit **Disconnect time ≤16ms** 



# Smart Connector Temperature Detector (SCTD)


Improving DC connector reliability

High failure rate for DC Connector











Connector plugging is not in place



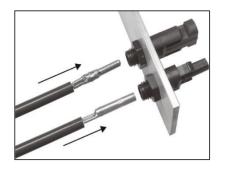
Poor contact due to external force

Poor metal core 'contact



Chemical

contamination


#### SCTD-TECH



#### DC Connector mounted on PCB

Automated production, can reduce the probability of internal PV terminals not inserted in place

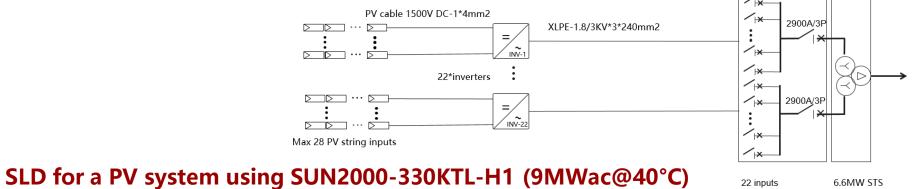
Add terminal temperature detection, when the terminal temperature is abnormal, the inverter can be shut down to avoid the spread of fault

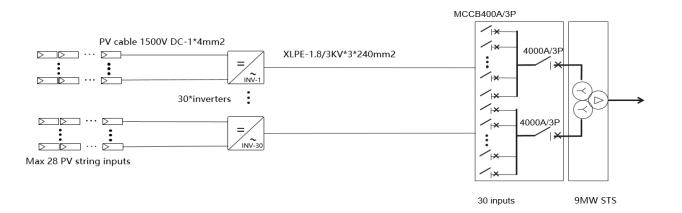


#### One-time piercing of terminal PIN

Automated assembly before shipment, high efficiency, effectively solve the problem of difficult and error-prone traditional terminal assembly

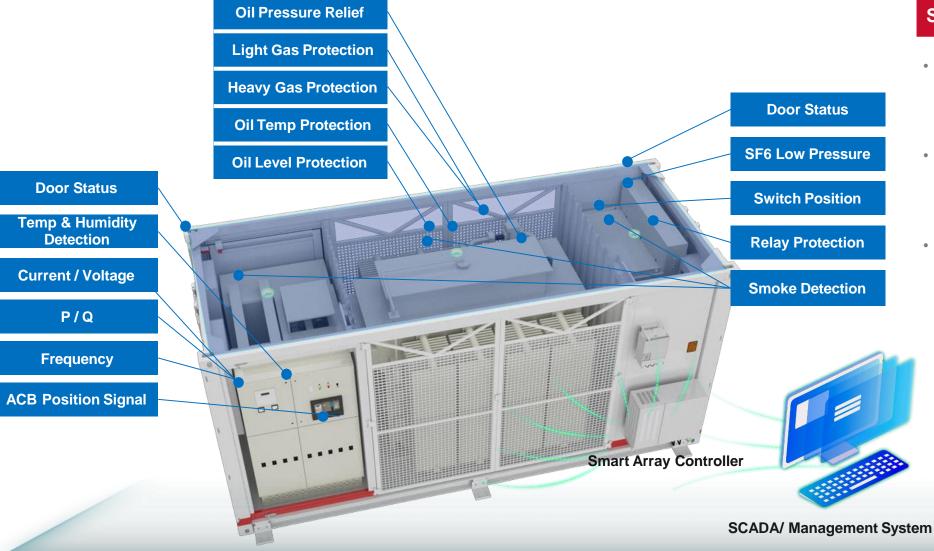






**Smart Transformer Station** 

# JUPITER-3000/6000/9000K-H1

|                                             | Input                                                        |                               | Input                                                        |                               | Input                                                    |                                 |
|---------------------------------------------|--------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-------------------------------|----------------------------------------------------------|---------------------------------|
| Available Inverters / PCS                   | SUN2000-330KTL-H1/ SUN2000-330KTL                            | -H2                           | SUN2000-330KTL-H1/ SUN2000-330KTL                            | -H2                           | SUN2000-330KTL-H1/ SUN2000-330KTL-H2                     |                                 |
| Maximum LV AC Inputs                        | 11                                                           |                               | 22                                                           | 22                            |                                                          |                                 |
| AC Power                                    | 3,300 kVA @40°C / 2,970 kVA @50°C 1                          |                               | 6,600 kVA @40°C / 5,940 kVA @50°C                            | 1                             | 9,000 kVA @40°C / 8                                      | ,250 kVA @50℃ <sup>1</sup>      |
| Rated Input Voltage                         | 800 V                                                        |                               | 800 V                                                        |                               | 800                                                      | V                               |
| LV Main Switches                            | ACB (2,900 A / 800 V / 3P, 1 x 1 pcs), MCCB (400 A / 8       | 00 V / 3P, 11 pcs)            | ACB (2,900 A / 800 V / 3P, 2 x 1 pcs), MCCB (400 A / 800     | 0 V / 3P, 2 x 11 pcs)         | ACB (4,000 A / 800 V / 3P, 2 x 1 pcs), M                 | CCB (400 A / 800 V / 3P, 2 x 15 |
|                                             | Output                                                       |                               | Output                                                       |                               | Output                                                   |                                 |
| Rated Output Voltage                        | 11 kV, 15 kV, 20 kV, 22 kV, 30 kV, 33 kV, 35 kV <sup>2</sup> | 13.8 kV, 34.5 kV <sup>2</sup> | 11 kV, 15 kV, 20 kV, 22 kV, 30 kV, 33 kV, 35 kV <sup>2</sup> | 13.8 kV, 34.5 kV <sup>2</sup> | 22 kV, 30 kV, 33 kV, 35 kV <sup>2</sup>                  | 34.5 kV <sup>2</sup>            |
| Frequency                                   | 50 Hz                                                        | 60 Hz                         | 50 Hz                                                        | 60 Hz                         | 50 Hz                                                    | 60 Hz                           |
| Transformer Type                            | Oil-immersed, Conservator Type                               |                               | Oil-immersed, Conservator Type                               |                               | Oil-immersed, Cor                                        | nservator Type                  |
| Transformer Cooling Type                    | ONAN                                                         |                               | ONAN                                                         |                               | ONA                                                      | N                               |
| Transformer Tappings                        | ± 2 x 2.5%                                                   |                               | ± 2 x 2.5%                                                   |                               | ± 2 x 2                                                  | .5%                             |
| Transformer Oil Type                        | Mineral Oil (PCB Free)                                       |                               | Mineral Oil (PCB Free)                                       |                               | Mineral Oil (                                            | PCB Free)                       |
| Transformer Vector Group                    | Dy11                                                         |                               | Dy11-y11                                                     |                               | Dy11-y                                                   | /11                             |
| Transformer Min. Peak Efficiency Index      | Tier 1 or Tier 2 In Accordance with EN 505                   | 688-1                         | Tier 1 or Tier 2 In Accordance with EN 505                   | 588-1                         | Tier 1 or Tier 2 In Accorda                              | ance with EN 50588-1            |
| RMU Type                                    | SF <sub>6</sub> Gas Insulated                                |                               | SF <sub>6</sub> Gas Insulated                                |                               | SF <sub>e</sub> Gas Insulated                            |                                 |
| RMU Transformer Protection Unit             | MV Vacuum Circuit Breaker Unit                               |                               | MV Vacuum Circuit Breaker Unit                               |                               | MV Vacuum Circuit Breaker Unit                           |                                 |
| RMU Cable Incoming / Outgoing Unit          | Direct Cable Unit or Cable Load Break Swite                  | th Unit                       | Direct Cable Unit or Cable Load Break Switch Unit            |                               | Direct Cable Unit or Cable Load Break Switch Unit        |                                 |
| Auxiliary Transformer                       | Dry Type Transformer, 5 kVA                                  |                               | Dry Type Transformer, 5 kVA                                  |                               | Dry Type Transformer, 5 kVA                              |                                 |
|                                             | Protection                                                   |                               | Protection                                                   |                               | Protection                                               |                                 |
| Transformer Monitoring & Protection         | Oil Level, Oil Temperature, Oil Pressure and I               | Buchholz                      | Oil Level, Oil Temperature, Oil Pressure and Buchholz        |                               | Oil Level, Oil Temperature, C                            | Dil Pressure and Buchholz       |
| Protection Degree of MV & LV Room           | IP 54                                                        |                               | IP 54                                                        |                               | IP 5-                                                    | 1                               |
| Internal Arcing Fault Classification of STS | IAC A 20 kA 1s                                               |                               | IAC A 20 kA 1s                                               |                               | 1AC A 20                                                 | kA 1s                           |
| MV Relay Protection                         | 50/51, 50N/51N                                               |                               | 50/51, 50N/51N                                               |                               | 50/51, 50N/51N                                           |                                 |
| LV Overvoltage Protection                   | Type I+II                                                    |                               | Type I+II                                                    |                               | Type I                                                   | +11                             |
| Anti-rodent Protection                      | C5 in accordance with ISO 12944                              |                               | C5 in accordance with ISO 12944                              |                               | C5 in accordance with ISO 12944                          |                                 |
|                                             | Features                                                     |                               | Features                                                     |                               | Features                                                 |                                 |
| 2 kVA UPS                                   | Optional <sup>3</sup>                                        |                               | Optional 3                                                   |                               | Optional 3                                               |                                 |
| MV Surge Arrester for MV VCB                | Optional <sup>3</sup>                                        |                               | Optional <sup>3</sup>                                        |                               | Optional <sup>3</sup>                                    |                                 |
|                                             | General                                                      |                               | General                                                      |                               | General                                                  |                                 |
| Dimensions (W x H x D)                      | 6,058 x 2,896 x 2,438 mm (20' HC Contai                      | ner)                          | 6,058 x 2,896 x 2,438 mm (20' HC Contai                      | ner)                          | 6,058 x 2,896 x 2,438 mm (20' HC Container)              |                                 |
| Weight                                      | < 15 t                                                       |                               | < 22 t                                                       |                               | < 28                                                     | t                               |
| Operating Temperature Range                 | -25°C ~ 60°C ⁴ (-13°F ~ 140°F)                               |                               | -25°C ~ 60°C ⁴ (-13°F ~ 140°F)                               |                               | -25°C ~ 60°C * (-                                        | 13°F ~ 140°F)                   |
| Relative Humidity                           | 0% ~ 95%                                                     |                               | 0% ~ 95%                                                     |                               | 0% ~ 9                                                   | 5%                              |
| Max. Operating Altitude                     | 1,000 m <sup>5</sup>                                         | 1,500 m <sup>5</sup>          | 1,000 m <sup>5</sup>                                         | 1,500 m <sup>5</sup>          | 1,000 m <sup>5</sup>                                     | 1,500 m <sup>5</sup>            |
| MV-LV AC Connections                        | Prewired and Pretested, No Internal Cabling                  | Onsite                        | Prewired and Pretested, No Internal Cabling                  | Onsite                        | Prewired and Pretested, No                               | Internal Cabling Onsite         |
| LV & MV Room Cooling                        | Smart Cooling without Air-across for Higher A                | vailability                   | Smart Cooling without Air-across for Higher Availability     |                               | Smart Cooling without Air-across for Higher Availability |                                 |
| Communication                               | Modbus-RTU, Preconfigured with Smartlogg                     | 7.117.7.117.1                 | Modbus-RTU, Preconfigured with Smartlogg                     |                               | Modbus TCP, Preconfigure                                 |                                 |
| Applicable Standards                        | IEC 62271-202, EN 50588-1, IEC 60076, IEC 62271-2            |                               | IEC 62271-202, EN 50588-1, IEC 60076, IEC 62271-2            |                               | IEC 62271-202, EN 50588-1, IEC 600                       |                                 |


#### SLD for a PV system using SUN2000-330KTL-H1(3.3MWac@40°C) PV cable 1500V DC-1\*4mm2 XLPE-1.8/3KV\*3\*240mm2 MCCB400A/3P INV-1 11\*inverters 2900A/3P INV-11 3.3MW STS 11 inputs Max 28 PV string inputs SLD for a PV system using SUN2000-330KTL-H1 (6.6MWac@40°C) MCCB400A/3P /<sub>|×</sub> PV cable 1500V DC-1\*4mm2 2900A/3F XLPE-1.8/3KV\*3\*240mm2 /<sub>|X</sub> ∕<sub>|×</sub> 22\*inverters ∕<sub>|×</sub> ∕<sub>|×</sub> 2900A/3F





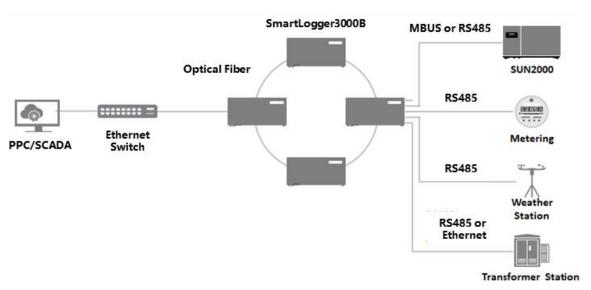


# **Integrated communication with SACU**



#### **Smart Design**

- Real time status monitoring and solution level data transmission
- 0.2% high precision online collection of electricity parameters
- Remote control of MV circuit breakers and LV ACB






# SACU & MBUS Key Communication Features

# SmartACU2000D





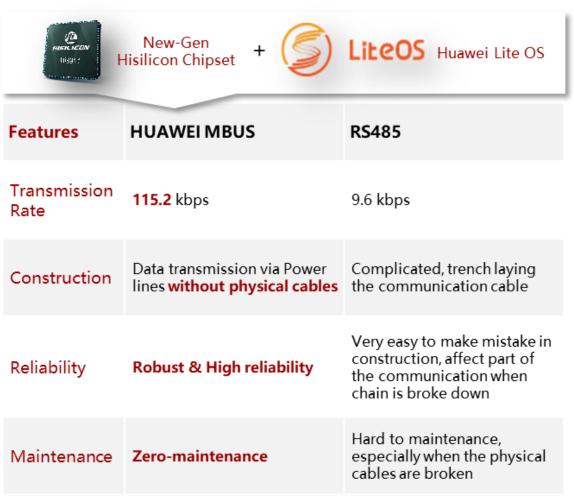
- Incorporates:
  - Smartlogger3000B
  - SmartPID2000
  - MBUS Communications
  - Comm. Interfaces (RS485, Fast ETH, and SFP)
- IP65 Protection
- Temperature Range: -40°C to 60°C
- Dimensions: 880 x 700 x 330
- Weight: 49 ~ 61kg

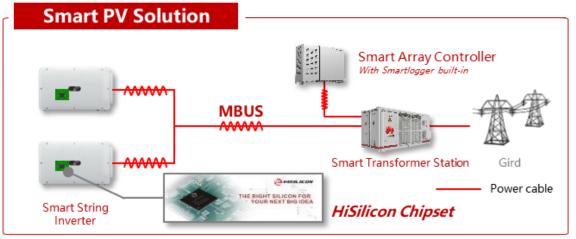


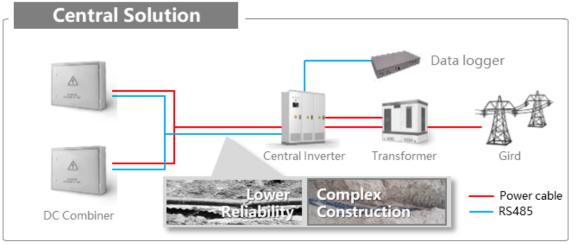
# SmartLogger3000B



Without SmartModule1000A



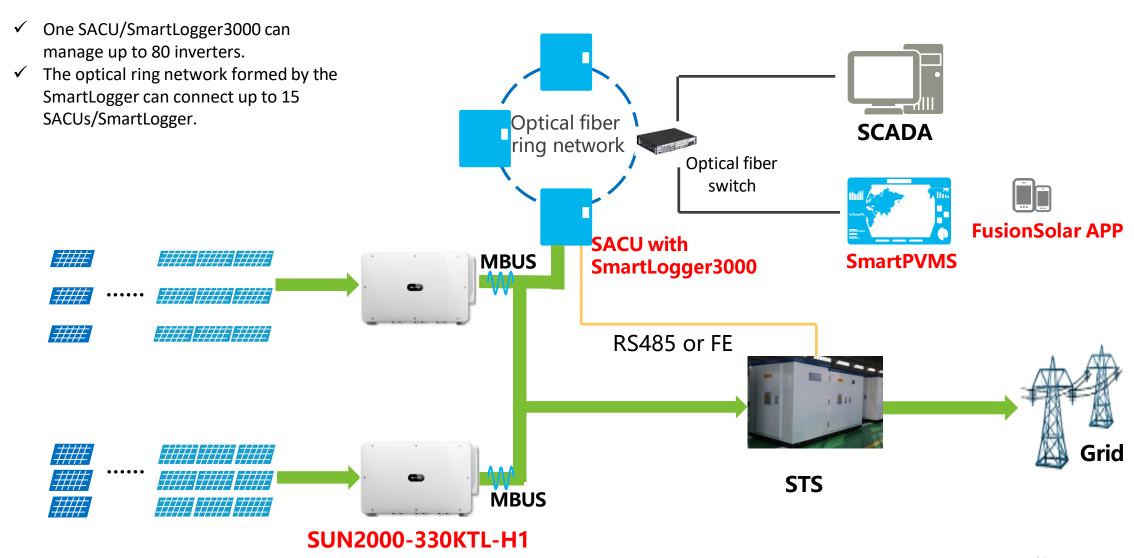


With SmartModule1000A


|                                      | Without SmartModule1000A                                     | With SmartModule 1000A                                       |  |  |  |
|--------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Device Management                    | •                                                            |                                                              |  |  |  |
| Max. Number of Manageable<br>Devices | 20                                                           | 0                                                            |  |  |  |
| Max. Number of Manageable<br>Devices | 15                                                           | 0                                                            |  |  |  |
| Communication Interface              |                                                              |                                                              |  |  |  |
| WAN                                  | WAN x 1, 10 / 10                                             | 00 / 1000 Mbps                                               |  |  |  |
| LAN                                  | LAN x 1, 10 / 100 / 1000 Mbps                                | LAN x 3, 10 / 100 / 1000 Mbps                                |  |  |  |
| Optical Ethernet                     | SFP x 2, 100 /                                               | 1000 Mbps                                                    |  |  |  |
| MBUS                                 | MBUS x 1, 115.2 kbps, Compatible with PLC                    |                                                              |  |  |  |
| RS485                                | COM x 3 1,200 / 2,400 / 4,800 / 9,600 / 19,200 / 115,200 bps | COM x 6 1,200 / 2,400 / 4,800 / 9,600 / 19,200 / 115,200 bps |  |  |  |
| Digital / Analog Input / Outputs     | DI x 4, DO x 2, AI x 4                                       | DI x 8, DO x 2, AI x 7                                       |  |  |  |
| PT100 / PT1000                       | 0                                                            | 2                                                            |  |  |  |
| Active DO                            | 12V, 100mA (connection                                       | on with relay, sensor)                                       |  |  |  |
| Communication Protocol               | •                                                            |                                                              |  |  |  |
| Ethernet                             | Modbus-TCP, IE                                               | C 60870-5-104                                                |  |  |  |
| RS485                                | Modbus-RTU, IEC 60870-5-                                     | -103 (standard), DL / T645                                   |  |  |  |
| Electrical                           | •                                                            |                                                              |  |  |  |
| Power Adapter                        | AC input: 100 ~ 240V, 50/                                    | 60Hz; DC output: 12V, 2A                                     |  |  |  |
| DC Power Supply                      | 24V, (                                                       | 0.8A                                                         |  |  |  |
| Power Consumption                    | Typical 9W, Max. 15W                                         | Typical 10W, Max. 18W                                        |  |  |  |
| Mechanical                           | •                                                            |                                                              |  |  |  |
| Dimensions (W x H x D)               | 225 x 160 x 44 mm                                            | 350 x 160 x 44 mm                                            |  |  |  |
| Weight                               | 2 kg                                                         | 3 kg                                                         |  |  |  |
| Protection Degree                    |                                                              |                                                              |  |  |  |



# **Safe & Reliable –** Faster, Robust & Reliable MBUS Solution (vs. RS485)








- Max standard distance for single core AC cable is 400m (MBUS 1.0)
- ✓ It can be expanded up to **700m**. (MBUS 2.0)



# Communication and Monitoring System Network







# Maintenance

#### Shutdown and Power-Off

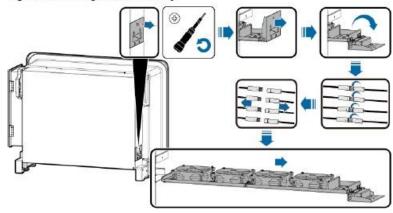
# **⚠** WARNING

After the system is powered off, the SUN2000 is still energized and hot, which may cause electric shocks or burns. Therefore, wait for at least 15 minutes wear PPE, and then operate the SUN2000.

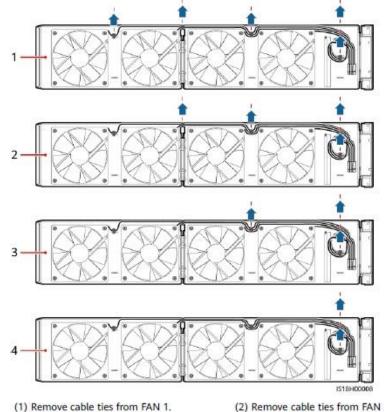
- **Step 1** Send a shutdown command on the app, SmartLogger, or management system. For details, see the user manual of the corresponding product.
- **Step 2** Turn off the AC switch between the SUN2000 and the power grid.
- **Step 3** Set the two **DC SWITCH** to **OFF**.



# Replacing a Fan


#### A CAUTION

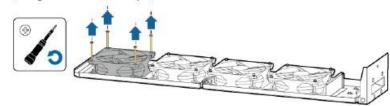
- · Before replacing a fan, power off the SUN2000.
- . When replacing a fan, use insulated tools and wear PPE.


#### Step 1 Remove the fan tray.

- 1. Remove the screws from the fan tray and store them properly.
- 2. Pull out the fan tray until the fan baffle plate aligns with the SUN2000 enclosure.
- 3. Place down the handle.
- Unscrew the connectors.
- Disconnect the cables.
- Pull out the fan tray.

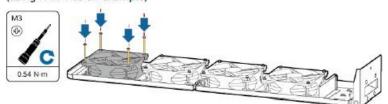
Figure 8-3 Pulling out the fan tray




Step 2 Remove the cable ties from the faulty fan.



- (3) Remove cable ties from FAN 3.
- (2) Remove cable ties from FAN 2.
- (4) Remove cable ties from FAN 4.


Step 3 Remove the faulty fan.

(using FAN 1 as an example)

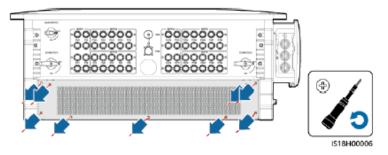


Step 4 Install a new fan.

(using FAN 1 as an example)






### Routine Maintenance

To ensure that the SUN2000 can operate properly for a long term, you are advised to perform routine maintenance on it as described in this section.

#### **A** CAUTION

- Before cleaning the SUN2000, connecting cables, and maintaining the grounding reliability, power off the SUN2000 and ensure that the MAIN SWITCH and all DC SWITCH of the SUN2000 are OFF.
- Do not open the maintenance compartment door on rainy or snowy days. If you need to, take protective measures to prevent rain or snow from entering the maintenance compartment. If protective measures cannot be taken, do not open the maintenance compartment door.

#### Removing the baffle of the air intake vent



#### NOTICE

After the cleaning is complete, reinstall the baffle plate. Tighten the M4 screws with a torque of 1.2 N·m.

#### Maintenance checklist

| Check Item                          | Criteria                                                                                                                                                                                                                                                                                             | Maintenance<br>Interval                                                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Cleanness of air inlet and outlet   | There is no dust on the air intake and exhaust vents. If necessary, remove the baffle of the air intake vent and clean the dust.                                                                                                                                                                     | Once every 6 to 12 months                                                                |
| Fan                                 | The fans do not produce abnormal sounds during operation.                                                                                                                                                                                                                                            | Once every 6 to 12 months                                                                |
| System running<br>status            | <ul> <li>The SUN2000 is not damaged or deformed.</li> <li>The SUN2000 does not generate abnormal sounds during operation.</li> <li>All SUN2000 parameters are correctly set during operation.</li> </ul>                                                                                             | Once every 6 months                                                                      |
| Electrical<br>connection            | <ul> <li>Cables are securely connected.</li> <li>Cables are intact. In particular, the parts in contact with metallic surfaces are not damaged.</li> <li>The sealing plugs of unused DC input terminals are secured.</li> <li>The unused COM and USB ports are locked by waterproof caps.</li> </ul> | 6 months after the<br>first commissioning<br>and once every 6 to<br>12 months after that |
| Grounding reliability               | Ground cables are securely connected.                                                                                                                                                                                                                                                                | 6 months after the first commissioning and once every 6 to 12 months after that          |
| Vegetation<br>around the<br>SUN2000 | <ul> <li>Perform inspection and weeding<br/>as required.</li> <li>Clean the site promptly after<br/>weeding.</li> </ul>                                                                                                                                                                              | Based on the local wilting season                                                        |

# Thank you.

把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界。

Bring digital to every person, home and organization for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.





# Troubleshooting for common faults.

Alarm severities are defined as follows:

- Major: The inverter is faulty or the external environment is abnormal. As a result, the output power decreases or the inverter stops feeding into the grid.
- Minor alarm: Some components of the inverter are faulty but the inverter can still connect to the grid and generate power.
- Warning: The inverter works properly. The output power decreases or some authorization functions fail due to external factors.

| Alar<br>m ID | Alarm<br>Name             | Alarm<br>Severity                                                           | Possible Cause                                                                                                                                                                                                | Suggestion                                                                                                                                                                                                                                                                           |
|--------------|---------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2001         | High<br>String<br>Voltage | Major                                                                       | The PV array is not properly configured. Excessive PV modules are connected in series in the PV string, and therefore the PV string open-circuit voltage exceeds the maximum operating voltage of the device. | Check the serial connection configuration of the PV strings in the array and ensure that the PV string open-circuit voltage is not greater than the maximum operating voltage of the device. After the PV array configuration is corrected, the alarm will be automatically cleared. |
|              |                           |                                                                             | <ul> <li>Cause ID = 1: PV1, PV2,<br/>PV3, and PV4.</li> </ul>                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |
|              |                           |                                                                             | <ul> <li>Cause ID = 2: PV5, PV6,<br/>PV7, PV8, and PV9.</li> </ul>                                                                                                                                            |                                                                                                                                                                                                                                                                                      |
|              |                           | <ul> <li>Cause ID = 3: PV10,<br/>PV11, PV12, PV13, and<br/>PV14.</li> </ul> |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |
|              |                           |                                                                             | <ul> <li>Cause ID = 4: PV15,<br/>PV16, PV17, and PV18.</li> </ul>                                                                                                                                             |                                                                                                                                                                                                                                                                                      |
|              |                           | <ul> <li>Cause ID = 5: PV19,<br/>PV20, PV21, PV22, and<br/>PV23.</li> </ul> |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |
|              |                           | <ul> <li>Cause ID = 6: PV24,<br/>PV25, PV26, PV27, and<br/>PV28.</li> </ul> |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |
| 2003         | DC Arc<br>Fault           | Major                                                                       | Cause ID = 1–28,<br>corresponding to PV1–PV28<br>respectively.                                                                                                                                                | Check whether the string cables arced or are in poor contact.                                                                                                                                                                                                                        |
|              |                           |                                                                             | The PV string power cables arced or are in poor contact.                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |
| 2010         | Abnorm                    | Major                                                                       | Cause ID = 1                                                                                                                                                                                                  | Cause ID = 1                                                                                                                                                                                                                                                                         |
|              | al DC<br>Input            | 1 2020 0000000                                                              | Strings PV1 to PV9 are not connected.                                                                                                                                                                         | At least one PV string from PV1 to PV9 is connected.                                                                                                                                                                                                                                 |
|              |                           |                                                                             | Cause ID = 2                                                                                                                                                                                                  | Cause ID = 2                                                                                                                                                                                                                                                                         |
|              |                           |                                                                             | The DC SWITCH is OFF.                                                                                                                                                                                         | Turn on the MAIN SWITCH manually.                                                                                                                                                                                                                                                    |
|              |                           |                                                                             |                                                                                                                                                                                                               | 2. Turn on all DC SWITCH manually.                                                                                                                                                                                                                                                   |
|              |                           |                                                                             |                                                                                                                                                                                                               | Turn off the MAIN SWITCH manually.                                                                                                                                                                                                                                                   |
|              |                           |                                                                             |                                                                                                                                                                                                               | If the fault persists, contact your dealer or technical support.                                                                                                                                                                                                                     |



| Alar<br>m ID | Alarm<br>Name                       | Alarm<br>Severity | Possible Cause                                                                                                                                                                                                           | Suggestion                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2011         | String<br>Reverse<br>Connecti<br>on | Major             | Cause ID = 1-28,<br>corresponding to PV1-PV28<br>respectively.<br>The PV string is reversely<br>connected.                                                                                                               | Check whether the PV string is connected to the device in reverse polarity. If yes, wait until the PV string current decreases to below 0.5 A, set DC SWITCH to OFF, and adjust the PV string polarity.                                                                                                                                                                                                          |
|              |                                     |                   |                                                                                                                                                                                                                          | device on the local maintenance<br>app or WebUI of the upper-layer<br>controller. Alternatively, you can<br>turn off the AC and DC switches,<br>wait for 5 minutes, and then turn<br>on the AC and DC switches.                                                                                                                                                                                                  |
| 2012         | String<br>Current<br>Backfee<br>d   | Warning           | Cause ID = 1-28,<br>corresponding to PV1-PV28<br>respectively.<br>Only a few PV modules are<br>connected in series in the<br>PV string. Therefore, the<br>terminal voltage is lower<br>than that of other PV<br>strings. | <ol> <li>Check whether the number of PV<br/>modules connected in series in this<br/>PV string is less than the number<br/>of PV modules connected in series<br/>in the other PV strings connected<br/>in parallel with this PV string. If<br/>yes, wait until the PV string<br/>current drops to below 0.5 A, set<br/>DC SWITCH to OFF, and adjust<br/>the number of PV modules in the<br/>PV string.</li> </ol> |
|              |                                     |                   |                                                                                                                                                                                                                          | <ol><li>Check whether the PV string is<br/>shaded.</li></ol>                                                                                                                                                                                                                                                                                                                                                     |
|              |                                     |                   |                                                                                                                                                                                                                          | <ol><li>Check whether the open-circuit<br/>voltage of the PV string is normal.</li></ol>                                                                                                                                                                                                                                                                                                                         |
| 2013         | Abnorm<br>al String<br>Power        | Warning           | Cause ID = 1-28,<br>corresponding to PV1-PV28<br>respectively.                                                                                                                                                           | Check whether the PV string<br>current is obviously lower than the<br>currents of other PV strings.                                                                                                                                                                                                                                                                                                              |
|              |                                     |                   | <ul> <li>The PV string is shaded<br/>for a long time.</li> </ul>                                                                                                                                                         | <ol><li>If yes, check whether the PV string<br/>is shaded.</li></ol>                                                                                                                                                                                                                                                                                                                                             |
|              |                                     |                   | The PV string has aged<br>abnormally.                                                                                                                                                                                    | If the PV string is clean and not<br>shaded, check whether any PV<br>module is faulty.                                                                                                                                                                                                                                                                                                                           |

| Alar<br>m ID | Alarm<br>Name                                 | Alarm<br>Severity | Possible Cause                                                                                                                                               | Suggestion                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-----------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2014         | High<br>String<br>Voltage<br>to<br>Ground     | Major             | Cause ID = 1<br>The string-to-ground<br>voltage is abnormal, which<br>may cause power<br>degradation risks.                                                  | If no PID compensation device is deployed in the system, disable the PID protection function. Note: If the PID protection function is disabled but the nighttime reactive power compensation is enabled, PV module degradation may occur.                                                                                                                                                                                                                           |
|              |                                               |                   |                                                                                                                                                              | device in the system, check<br>whether it is faulty. If yes, rectify<br>the fault.                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                               |                   |                                                                                                                                                              | 3. Check whether the device and PID compensation device have consistent compensation direction settings. If not, adjust the settings based on the PV module model. (Note: If the PV- is set to positive offset, the voltage between the PV- of the device and the ground should be greater than 0 V to clear the alarm; if the PV+ is set to negative offset, the voltage between the PV+ of the device and the ground should be less than 0 V to clear the alarm.) |
|              |                                               |                   |                                                                                                                                                              | <ol> <li>If the alarm occurs repeatedly,<br/>contact your dealer or technical<br/>support.</li> </ol>                                                                                                                                                                                                                                                                                                                                                               |
| 2015         | PV<br>String<br>Loss                          | Warning           | Cause ID = 1-28,<br>corresponding to PV1-PV28<br>respectively.  • A single string is lost.  • Both 2-in-1 PV strings<br>are lost.  • Either of the 2-in-1 PV | Check whether cables are properly connected to the inverter terminals.     Check whether cables are properly connected to the PV string terminals.     If a 2-in-1 terminal is used, check                                                                                                                                                                                                                                                                          |
|              |                                               |                   | strings is lost.                                                                                                                                             | whether it is normal.  4. If the string connection status is manually configured, check whether the configured status is consistent with the actual connection status.                                                                                                                                                                                                                                                                                              |
| 2031         | Phase<br>Wire<br>Short-<br>Circuited<br>to PE | Major             | Cause ID = 1<br>The phase wire is short-<br>circuited to PE or its<br>impedance to PE is low.                                                                | Check the impedance of the phase wire to PE, locate the position with low impedance, and rectify the fault.                                                                                                                                                                                                                                                                                                                                                         |

| Alar<br>m ID | Alarm<br>Name            | Alarm<br>Severity | Possible Cause                                                                                                                                                   | Suggestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|--------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2032         | Grid<br>Loss             | Major             | Cause ID = 1  The power grid experiences an outage.  The AC circuit is disconnected or the AC circuit breaker is OFF.                                            | Check whether the AC voltage is normal.     Check whether the AC circuit is disconnected or the AC circuit breaker is OFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2033         | Grid<br>Undervo<br>Itage | Major             | Cause ID = 1 The grid voltage is below the lower threshold or the undervoltage duration exceeds the time that triggers low voltage ridethrough (LVRT).           | 1. If the alarm occurs occasionally, the power grid may be abnormal temporarily. The device automatically recovers after detecting that the power grid becomes normal.  2. If the alarm occurs frequently, check whether the power grid voltage is within the allowed range. If no, contact the local power operator. If yes, modify the power grid undervoltage protection threshold after obtaining the consent of the local power operator.  3. If the fault persists for a long time, check the connection between the AC switch and power cables.                                                         |
| 2034         | Grid<br>Overvolt<br>age  | Major             | Cause ID = 1 The grid voltage exceeds the higher threshold or the high voltage has lasted for more than the value specified by high voltage ride-through (HVRT). | 1. If the alarm occurs occasionally, the power grid may be abnormal temporarily. The device automatically recovers after detecting that the power grid becomes normal.  2. If the alarm occurs frequently, check whether the power grid voltage is within the allowed range. If no, contact the local power operator. If yes, modify the power grid overvoltage protection threshold after obtaining the consent of the local power operator.  3. Check whether the peak voltage of the power grid is too high. If the fault occurs frequently and persists for a long time, contact the local power operator. |



| Alar<br>m ID | Alarm<br>Name                    | Alarm<br>Severity | Possible Cause                                                                                                           | Suggestion                                                                                                                                                                                                                                                              |
|--------------|----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2035         | Grid<br>Voltage<br>Imbalan<br>ce | Major             | Cause ID = 1 The difference between grid phase voltages exceeds the upper threshold.                                     | If the alarm occurs occasionally,<br>the power grid may be abnormal<br>temporarily. The device<br>automatically recovers after<br>detecting that the power grid<br>becomes normal.                                                                                      |
|              |                                  |                   |                                                                                                                          | <ol> <li>If the alarm occurs frequently,<br/>check whether the power grid<br/>voltage is within the normal range.<br/>If no, contact the local power<br/>operator.</li> </ol>                                                                                           |
|              |                                  |                   |                                                                                                                          | If the fault persists for a long time, check the connection of the AC cables.                                                                                                                                                                                           |
|              |                                  |                   |                                                                                                                          | <ol> <li>If the AC cables are correctly<br/>connected and the alarm persists<br/>and affects the operation of the<br/>plant, contact the local power<br/>operator.</li> </ol>                                                                                           |
| 2036         | Grid<br>Overfreq<br>uency        | Major             | Cause ID = 1 Power grid exception: The power grid frequency is higher than the frequency required in the local standard. | If the alarm occurs occasionally,<br>the power grid may be abnormal<br>temporarily. The device<br>automatically recovers after<br>detecting that the power grid<br>becomes normal.                                                                                      |
|              |                                  |                   |                                                                                                                          | If the alarm occurs frequently, check whether the power grid frequency is within the allowed range. If not, contact the local power operator. If yes, modify the power grid overfrequency protection threshold after obtaining the consent of the local power operator. |

| Alar<br>m ID | Alarm<br>Name                       | Alarm<br>Severity     | Possible Cause                                                                                                                                                                            | Suggestion                                                                                                                                                                                                                                                    |
|--------------|-------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2037         | Grid<br>Underfre<br>quency          | Major                 | Cause ID = 1  Power grid exception: The actual power grid frequency is lower than the standard requirement for the local power grid.                                                      | If the alarm occurs occasionally, the power grid may be abnormal temporarily. The device automatically recovers after detecting that the power grid becomes normal.      If the alarm occurs frequently,                                                      |
|              |                                     |                       |                                                                                                                                                                                           | check whether the power grid<br>frequency is within the allowed<br>range. If not, contact the local<br>power operator. If yes, modify the<br>power grid underfrequency<br>protection threshold after<br>obtaining the consent of the local<br>power operator. |
| 2038         | Unstabl<br>e Grid<br>Frequen<br>cy  | Major                 | Cause ID = 1  Power grid exception: The actual grid frequency change rate does not comply with the local power grid standard.                                                             | If the alarm occurs occasionally,<br>the power grid may be abnormal<br>temporarily. The device<br>automatically recovers after<br>detecting that the power grid<br>becomes normal.                                                                            |
|              |                                     |                       |                                                                                                                                                                                           | <ol><li>If the alarm occurs frequently,<br/>check whether the power grid<br/>frequency is within the allowed<br/>range. If not, contact the local<br/>power operator.</li></ol>                                                                               |
| 2039         | AC<br>Overcurr<br>ent               | Major                 | Cause ID = 1 The grid experiences a dramatic voltage drop or is short-circuited. As a result, the transient AC current of the device exceeds the upper threshold and triggers protection. | The device detects its external working conditions in real time.     After the fault is rectified, the device automatically recovers.                                                                                                                         |
|              |                                     |                       |                                                                                                                                                                                           | <ol> <li>If the alarm occurs frequently and<br/>affects the operation of the power<br/>plant, check whether AC short<br/>circuit exists. If the fault persists,<br/>contact your dealer or technical<br/>support.</li> </ol>                                  |
| 2040         | DC<br>Compon<br>ent<br>Overhig<br>h | ompon<br>nt<br>verhig | Cause ID = 1                                                                                                                                                                              | The device detects its external                                                                                                                                                                                                                               |
|              |                                     |                       | The DC component in the AC current exceeds the upper threshold.                                                                                                                           | working conditions in real time.<br>After the fault is rectified, the<br>device automatically recovers.                                                                                                                                                       |
|              |                                     |                       |                                                                                                                                                                                           | If the alarm occurs frequently,<br>contact your dealer or technical<br>support.                                                                                                                                                                               |

| Alar<br>m ID | Alarm<br>Name                                   | Alarm<br>Severity | Possible Cause                                                                                                                                                                     | Suggestion                                                                                                                                                                                                                                                                                                                           |
|--------------|-------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2051         | Abnorm<br>al<br>Residual<br>Current             | Major             | Cause ID = 1 The ground insulation resistance decreases during device operation.                                                                                                   | If the alarm occurs occasionally, the external circuit may be abnormal temporarily. The device will automatically recover after the fault is rectified.     If the alarm occurs frequently or persists, check whether the DC-toground impedance is too low.                                                                          |
| 2062         | Low<br>Insulatio<br>n<br>Resistan<br>ce         | Major             | Cause ID = 1  A short circuit occurs between the PV array and the ground.  The ambient air of the PV array is damp and the insulation between the PV array and the ground is poor. | Set Insulation resistance protection to the minimum value and restart the inverter.     Check that the PE cable of the device is correctly connected.     Check the output impedance of the PV array to ground. If there is a short circuit or lack of insulation, rectify it.                                                       |
| 2063         | Overtem perature                                | Minor             | Cause ID = 1  The device is installed in a place with poor ventilation.  The ambient temperature is higher than the upper threshold.  The device is faulty.                        | 1. Check the ventilation and ambient temperature of the device installation position. 2. If the ventilation is poor or the ambient temperature exceeds the upper threshold, improve the ventilation and heat dissipation. 3. If the ventilation and ambient temperature meet requirements, contact your dealer or technical support. |
| 2064         | Device<br>Fault                                 | Major             | Cause ID = 1–12, 20 A major fault has occurred on a circuit inside the device.                                                                                                     | Cause ID = 1-12 Turn off the AC and DC switches, wait for 5 minutes, and then turn on the AC and DC switches. If the fault persists, contact your dealer or technical support.  Cause ID = 20 Do not turn off the AC output switch or DC input switch. Contact your dealer or technical support.                                     |
| 2065         | Upgrade<br>Failed or<br>Version<br>Mismatc<br>h | Minor             | Cause ID = 1-4, 7<br>The upgrade ends<br>abnormally.                                                                                                                               | Perform an upgrade again.     If the upgrade fails for multiple times, contact your dealer or technical support.                                                                                                                                                                                                                     |



| Alar<br>m ID | Alarm<br>Name                          | Alarm<br>Severity | Possible Cause                                                                                                                                                                     | Suggestion                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|----------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2066         | License<br>Expired                     | Warning           | Cause ID = 1 1. The license has entered the grace period. 2. The license is about to expire.                                                                                       | Apply for a new license certificate.     Load the new license certificate.                                                                                                                                                                                                                                                                                                                                                      |
| 2086         | Abnorm<br>al<br>External<br>Fan        | Major             | Cause ID = 1-4,<br>corresponding to external<br>fans FAN1-FAN4.<br>The external fan is short-<br>circuited, the power supply<br>is insufficient, or the air<br>channel is blocked. | 1. Turn off the AC and DC switches, check whether the fan blades are damaged, and clear the foreign matter around the fan.  2. Reinstall the fan and turn on the AC and DC switches. If the fault persists after the device runs for 15 minutes, replace the external fan.                                                                                                                                                      |
| 2087         | Abnorm<br>al<br>Internal<br>Fan        | Major             | Cause ID = 1 and 2,<br>corresponding to internal<br>fans FAN1 and FAN2.<br>The internal fan is short-<br>circuited, the power supply<br>is insufficient, or the fan is<br>damaged. | Turn off the AC and DC switches, wait<br>for 5 minutes, and then turn on the<br>AC and DC switches. If the fault<br>persists after the device runs for 5<br>minutes, contact your dealer or<br>technical support to replace the<br>device.                                                                                                                                                                                      |
| 2088         | Abnorm<br>al DC<br>Protecti<br>on Unit | Major             | Cause ID = 3 The contact points of the DC switches are stuck.                                                                                                                      | 1. If the DC indicator on the panel is off, contact your dealer or technical support to replace the device.  2. If the DC indicator on the panel is on, wait until the PV string current decreases to below 0.5 A, turn off the AC switch and DC switch, wait for 5 minutes, and then turn on the AC switch and DC switch. If the fault persists after the device runs for 5 minutes, contact your dealer or technical support. |
| 2093         | Abnorm<br>al DC<br>Switches            | Minor             | Cause ID = 1 The DC switch is not in the ON position, or the DC switch reset button is not pressed down to the bottom.                                                             | Check whether all DC switches are in the ON position. If not, turn the switches to the ON position (you can rotate the switches with force to ensure that they are in position). If the switches still cannot be turned to the ON position, press the reset buttons of all DC switches inwards until they cannot go further, and then turn on the DC switches again.                                                            |

| Alar<br>m ID | Alarm<br>Name                                         | Alarm<br>Severity | Possible Cause                                                                                                                         | Suggestion                                                                                                                                                                                           |
|--------------|-------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2099         | Local<br>Access<br>Certifica<br>te<br>Invalid         | Warning           | Cause ID = 1<br>The digital signature<br>certificate is invalid.                                                                       | Check the time or replace the digital signature certificate.                                                                                                                                         |
| 2100         | Local<br>Access<br>Certifica<br>te About<br>to Expire | Warning           | Cause ID = 1 The digital signature certificate is about to expire.                                                                     | Replace the digital signature certificate in time.                                                                                                                                                   |
| 2101         | Local<br>Access<br>Certifica<br>te<br>Expired         | Major             | Cause ID = 1<br>The digital signature<br>certificate has expired.                                                                      | Replace the digital signature certificate immediately.                                                                                                                                               |
| 2102         | Protecti<br>on upon<br>Commu<br>nication<br>Failure   | Warning           | Cause ID = 1 When the communication disconnection duration exceeds the specified threshold, the device starts the protection function. | If the fault occurs occasionally, the device recovers to the normal state after receiving a scheduling command. No manual intervention is required.     Manually deliver a power scheduling command. |
|              |                                                       |                   |                                                                                                                                        | If the Protection upon     Communication Failure function     is not required, disable it.                                                                                                           |
| 6144<br>0    | Monitori<br>ng Unit<br>Faulty                         | Minor             | Cause ID = 1  The flash memory is insufficient.  The flash memory has bad sectors.                                                     | Turn off the AC and DC switches, wait for 5 minutes, and then turn on the AC and DC switches. If the fault persists, replace the monitoring board or contact your dealer or technical support.       |

